There is a uniform electrostatic field in a region. The potential at various points on a small sphere centred at $P$, in the region, is found to vary between in the limits $589.0\,V$ to $589.8\, V$. What is the potential at a point on the sphere whose radius vector makes an angle of $60^o$ with the direction of the field ?........$V$
$589.5$
$589.2$
$589.4$
$589.6$
A charge of $10 \,\mu C$ is placed at the origin of $x-y$ coordinate system. The potential difference between two points $(0, a)$ and $(a, 0)$ in volt will be
Four electric charges $+q,+q, -q$ and $-q$ are placed at the comers of a square of side $2L$ (see figure). The electric potential at point $A,$ midway between the two charges $+q$ and $+q,$ is
In a hollow spherical shell potential $(V)$ changes with respect to distance $(r)$ from centre
The radius of a charged metal sphere $(R)$ is $10\,cm$ and its potential is $300\,V$. Find the charge density on the surface of the sphere
Two point charges $4\,\mu C$ and $ - 1\,\mu C$ are kept at a distance of $3\ m$ from each other. What is the electric potential at the point where the electric field is zero?......$V$